Γ-convergence of Graph Ginzburg–landau Functionals

نویسندگان

  • Yves van Gennip
  • Andrea L. Bertozzi
چکیده

We study Γ-convergence of graph-based Ginzburg–Landau functionals, both the limit for zero diffusive interface parameter ε → 0 and the limit for infinite nodes in the graph m→∞. For general graphs we prove that in the limit ε → 0 the graph cut objective function is recovered. We show that the continuum limit of this objective function on 4-regular graphs is related to the total variation seminorm and compare it with the limit of the discretized Ginzburg–Landau functional. For both functionals we also study the simultaneous limit ε → 0 and m → ∞, by expressing ε as a power of m and taking m → ∞. Finally we investigate the continuum limit for a nonlocal means-type functional on a completely connected graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstracts of courses

s of courses Giovanni ALBERTI “Concentration phenomena for functionals of Ginzburg-Landau type. A variational approach” In these lectures I will describe an approach by Γ-convergence to certain concentration phenomena for minimizers of functionals of Ginzburg-Landau type, as developped in [ABO2] and [JS]. Consider the functionals

متن کامل

Compactness Results for Ginzburg-landau Type Functionals with General Potentials

We study compactness and Γ-convergence for Ginzburg-Landau type functionals. We only assume that the potential is continuous and positive definite close to one circular well, but allow large zero sets inside the well. We show that the relaxation of the assumptions does not change the results to leading order unless the energy is very large.

متن کامل

Wavelet analogue of the Ginzburg-Landau energy and its Γ-convergence

This paper considers a wavelet analogue of the classical Ginzburg-Landau energy, where the Hseminorm is replaced by the Besov seminorm defined via an arbitrary regular wavelet. We prove that functionals of this type converge, in the Γ-sense, to a weighted analogue of the TV functional on characteristic functions of finite-perimeter sets. The Γ-limiting functional is defined explicitly, in terms...

متن کامل

Variational Equivalence between Ginzburg-landau, Xy Spin Systems and Screw Dislocations Energies

We introduce and discuss discrete two-dimensional models for XY spin systems and screw dislocations in crystals. We prove that, as the lattice spacing ε tends to zero, the relevant energies in these models behave like a free energy in the complex Ginzburg-Landau theory of superconductivity, justifying in a rigorous mathematical language the analogies between screw dislocations in crystals and v...

متن کامل

Convergence of Ginzburg-landau Functionals in 3-d Superconductivity

In this paper we consider the asymptotic behavior of the GinzburgLandau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via Γ-convergence, a reduced model for the vortex density, and deduce a curvature equation for the vortex lines. In the companion paper [2] we describe further applications to superconductivity and superfluidity, such as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012